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7 Shape and space 

Mathematics is primarily involved with the identification of patterns in the behaviour of 
data and the use of these patterns in problem solving.  This will often involve numbers, but 
in many important situations we are interested in the behaviour and properties of shapes.  
Working with shapes can increase spatial awareness in two- and three-dimensions and can 
develop mathematical skills in geometry and trigonometry.  In addition, there may be 
opportunities for applying wider mathematical techniques, such as:  ratios for converting 
scales, or algebra for transforming shapes.  In this chapter, we examine various practical 
numeracy applications involving the mathematics of shape and space   
 

Chapel conversion 

Students in construction, design and technology, and computing can benefit from 

experience in the use of architectural computer aided design software.  Various CAD 

systems suitable for students are available.  Here, we describe the use of ArchiCAD 

(Graphisoft, 2008a, 2008b) in producing designs for the conversion of a disused chapel 

building into a family house.   

Architectural CAD systems operate by assembling a collection of solid shapes, which are 

positioned in three-dimensional space to represent the building and its components.  From 

the collection of shapes, the software is able to construct plans, elevations or three-

dimensional models as required by the user.  Particular components of the building, such as 

a roof, wall or floor, can be made transparent so that internal details of the structure are 

visible.  

Complex components of the building can be constructed from simple shapes.  This involves 

the application of logic operations on solid shapes.  To demonstrate this process, consider 

two shapes, a cylinder and a cube, which have their centres at the same point in three-

dimensional space: 

 

 

 

 

 

 

 

 
Figure 118:  Solid shapes  
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The shapes can be combined in different ways: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 119:  Logic operations on the solid shapes  

By a combination of these operations, complex building components can be constructed. 

The design of a building begins with the layout of the site.  The location may be flat and 

level, but often a building will be constructed on a sloping site.  The software allows a series 

of spot heights to be entered from a topographic survey of the site.  Software then 

interpolates between the known points to produce a contoured surface.  The building 

foundation slab can then be positioned, as in figure 120. 

 

  

 A logical OR operation produces 

a shape which includes all of the 

original cylinder and cube: 

 

 

 A logical AND operation leaves 

only the central area in which 

the cylinder and cube overlap 

with one another: 

 

 
Two different logical NOT 

operations are possible. 

 In the first, we obtain all areas 

of the cube which are not also 

in the cylinder.  This creates a 

hole through the cube: 

 

 

 In the second, we obtain all 

areas of the cylinder which are 

not also in the cube.  This 

leaves just the two ends of the 

original cylinder: 
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Figure 120:  Contoured model of the site, including the positioning of the building 

Exterior and internal walls may be added to the foundation slab by entering their 

dimensions.  The software allows the selection of a range of standard wall structures, but 

customised structures can also be build up from bricks, blocks, concrete, insulation or other 

materials.  

 

 

 

 

 

 

 

 

 

 

Figure 121:  Layout of external walls, with details of wall structure 

 

Standard doors and windows are provided, but again it is possible to construct custom 

doors and windows using panels, glazing bars and other components (figure 122). 
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Figure 122:  Creating a custom window  

 

 

 

 

 

A particularly important feature of architectural CAD systems is that complex building 

shapes can be represented, so that the creativity of the architect is not limited.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 123:  A non-standard building design, developed by geometrical and logical operations on solid shapes 

 

A final stage in the design may be to add furniture and fittings to the interior, to assist the 

architect and their clients in visualising the completed building. 
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The exercise we describe here involves a building conversion project, in which the layout of 

a former chapel building was modified by the insertion of an internal floor and staircase, 

construction of internal walls, and addition of a new kitchen extension at the rear of the 

property. 

Architect's drawings were provided, with dimensions either directly specified or available by 

scale measurement.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 124:  Architect's drawings for the chapel conversion 

 

Using ArchiCAD software, the topography of the sloping site was created and the foundation 

slabs of the building were added at their appropriate elevations.  
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External and internal walls were then added, selecting appropriate construction materials. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 125:  Input of external and internal walls 

The software allows the display of the solid model at each stage.  Switching to elevation 

views allows the shapes of walls to be modified, for example where the front wall of the 

chapel rises to the ridge line of the roof.  

  

Figure 126:  Solid model after adding external and internal walls 
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Roofs, windows and doors are added. Custom components were assembled according to 

the details shown on the architect's drawings.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 127:  Roofs, windows and doors added to the model 

The final stages of the model construction were to add external and internal features 

including porches, stairways, bathroom and kitchen fittings. 

 

 

 

  

Figure 128:  Addition of architectural details to the building 
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Curves in building construction 

The components of the chapel described in the previous section were all created from flat 

surfaces, but it is not uncommon for curves to be used in building designs: for example in 

domes or arches.  At different periods in history, and amongst different cultures, particular 

curved shapes have been favoured for the windows and doorways of castles, churches or 

other important buildings.  The carpenters and masons who created these buildings used 

standard geometrical techniques to lay out the curves. 

Amongst the more advanced practical skills taught to carpentry students are methods for 

constructing curved door and window frames of various designs. These designs have to be 

produced as a bench template for cutting the timber components.  As an example, students 

can investigate the construction method for a Tudor arch: 

 Two circles are drawn to create the required width for the arch 

 A square is constructed, with the distance between the circle centres as one side 

 The mid-point of the bottom edge CD of the square is used as a centre for 

constructing the upper arcs to complete the arch. 

 
 
 
 

 
 
 
 
 
 
 
 

Figure 129:  Geometrical construction for a Tudor arch 

 

         

   

 

 

 

 

 
 

Figure 130:  Ogee arch 

 



Chapter 7: Shape and space    147 
 

Another interesting shape is the ogee arch, as illustrated in figure 130 above.  The geometrical 
construction uses the following sequence: 
 

 A semicircle is drawn with its centre at O to create the width AB of the arch. 
 Using the diameter AB of the semicircle, two arcs are drawn from the points A and B 

so that they cross at point C.  
 A rectangle ABQP is constructed, so that the upper edge passes through point C. 
 Arcs are drawn from P and Q, passing through point C, which just touch the lower 

semicircle. 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 131:  Geometrical construction for an ogee arch 

Students can continue by investigating the geometry of other arch designs as a project.   

A useful practical application of geometry is to determine the radius of an existing circular 

arch, for example when renovations are carried out. 

 

 

 

 

 

 

 

 

 

 

 

Figure 132:  Technique for determining the radius of a circular arch 

 

www.thisiscarpentry.com/2012/01/06/circular-based-arches-part-1/ 
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 A piece of wood is measured, and its mid-point is marked.  The length of the 

wood is recorded as a value called RUN.  The wood is placed so that its two ends 

touch the arch. 

 A square is positioned at the mid-point of the wood, and is used to measure the 

perpendicular distance from the top surface of the wood to the arch.  This gives a 

value called RISE. 
 

The radius of the arch can then be calculated using the formula: 
 

𝑟𝑎𝑑𝑖𝑢𝑠 =
(

𝑟𝑢𝑛
2 )

2

+  𝑟𝑖𝑠𝑒2

2 × 𝑟𝑖𝑠𝑒
 

 

This expression can be verified in the following way: 

 

 

 

 

 

 

 

 

 

 

Figure 133:  Derivation of the arch radius formula 

Letting: the radius of the arch be r 

               the RUN of the piece of wood is 2a  

               the RISE is b  

By Pythagoras' theorem: 

                                                                 𝑟2 = 𝑎2 + 𝑐2 

But:                                                                   r = b + c 

Rearranging:                                                    c = r - b   

Substituting for c gives:                       𝑟2 = 𝑎2 + (𝑟 − 𝑏)2 

Expanding the square term:               𝑟2 = 𝑎2 + 𝑟2 − 2𝑟𝑏 +  𝑏2 

a 

c 
r 

b 
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Cancelling r2                                         2𝑟𝑏 = 𝑎2 + 𝑏2 

Hence:                                                 𝑟 =
𝑎2+𝑏2

2𝑏
 

Substituting:     run = 2a,   rise = b  gives: 

𝑟𝑎𝑑𝑖𝑢𝑠 =
(

𝑟𝑢𝑛
2 )

2

+  𝑟𝑖𝑠𝑒2

2 × 𝑟𝑖𝑠𝑒
 

 

Another interesting application of curve geometry is in brickwork. Examples include the 

construction of circular walls for towers, and serpentine boundary walls made up from 

multiple curved panels.  There may be practical requirements to calculate quantities of 

materials for curved brickwork, and to use geometrical techniques in laying out the curves 

on site. 

Bricks may be laid using different bonds, depending on whether a single or double thickness 

is required for the wall (Hammett and Morton, 1991): 

 

Figure 134:  Brick bonds 

 

Problems can arise if standard rectangular bricks are used for curved walls of small radius, 

and specialist bricks with curved faces are available: 

 

 

 

 

   

 

Figure 135:  Specialist curved bricks: stretcher (left) and header (right) 
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Serpentine walls can be a particularly attractive feature of gardens.  Reames (2012) 

discusses serpentine walls constructed in the early 1800's at the University of Virginia, USA.  

Interestingly, the curved pattern was chosen as a means of saving money.  The curved wall 

has greater stability, so can be constructed with only a single thickness of brick, in 

comparison to a straight wall which would require a double thickness or the addition of 

strengthening pillars at intervals along the wall.  

 

 

 

 

 

 

 

 

 

 

Laying out a serpentine wall requires the accurate positioning of the centres of the 

successive curves, on either side of the median line. A simple and practical technique used 

by builders at the University of Virginia was to lay out right angled triangles along the 

median line of the wall, using lengths of 3, 4 and 5 feet: 

 

 

 

 

 

 

 

 

 

Figure 137:  Geometrical construction for the serpentine wall 

 

 

 

Figure 136:  Serpentine wall 

3 ft 

5 ft 5 ft 

median line 

4 ft 4 ft 4 ft 4 ft 

5 ft 5 ft 3 ft 
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The arcs for the wall line can now be laid out by means of a string of length 5 feet, using the 

points P and Q as centres.  The procedure can be repeated along the median line of the wall 

to produce the necessary number of curved bays. 

 

 

 

 

 

 

 

 

 

 

Figure 138:  Laying out the line of the serpentine wall 

 

It can be shown by trigonometry that each curve of the wall makes an angle of 

approximately 53o with the median line.  Since the angles of approach are equal, the wall 

will appear as a continuous smooth curve. 

For the general case, Hammett and Morton (1991) provide formulae linking the radius R, 

depth D, pitch L , centre line length I, thickness t, and angle of curvature Ɵ:  

 

 

 

 

 

 

 

 

 

Figure 139:  Parameters for a serpentine wall 

L = 4 R sin Ɵ  

I = 4 R Ɵ,  where Ɵ is measured in radians 

D = 2 R ( 1 – cos Ɵ ) + t 

P 

Q 

I = Centre 
line length of 
the wall  
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It is useful for construction students to develop spreadsheets which allow the easy 

calculation of the parameters needed during the planning and laying out of curved 

brickwork. For a serpentine wall: 

 The wall thickness would be decided by the construction method and brick bond 

 The depth of the wall and the pitch of the curve would be known from the site plan. 

The radius of curve can then be calculated.  It is important that a correct radius is used, to 

ensure that the curved sections of the wall blend smoothly without any angular 

discontinuity. 

 

Industrial archaeology site recording 
 

In various courses it may be necessary to make accurate surveys of 

areas of land: for example, measuring the shape and slope profile of a 

construction site, or measuring the cross profile of a river channel in a 

geography project.  In this section, we examine surveying techniques 

using simple surveying equipment. 

A level can be used to measure changes in height.  This instrument 

allows the surveyor to identify a point on a graduated staff at the 

same elevation as the axis of the viewing telescope.   

 

 

 

 

 

 

 

 

 

 

Figure 140:  Survey level and graduated staff 

The survey begins by selecting a solid reference point which can be used as a datum, to 

which all height measurements can be related.  The datum might, for example, be the top of 

a brick wall or large boulder. 
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The level is set up on its tripod.  The graduated staff is positioned with its base on the datum 

point, and a height reading is made. 

 

 

 

  

 

 

A series of further points can then be surveyed.  In each case, the height reading on the staff 

is recorded. 

 

 

 

 

 

 

 

 

At some stage, it may become necessary to move the level to a new location.  When this is 

done, a height measurement taken should be taken for the previously recorded survey 

point.  This will allow a calculation of the relative heights of the sight lines for the different 

positions of the level. Further points can then be surveyed.  
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Figure 141:  Sequence of measurements during a survey by levelling 
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It is important to record survey results systematically so that no errors are made in 

processing the data.  A tabular format has been developed for recording levelling data 

(University of Manchester, 2016), as shown in figure 142.  Readings for the example survey 

are shown: 

Back 
sight 

Inter-
mediate 

Fore 
sight 

Rise Fall Reduced 
level 

Distance Remarks 

2.35      6.3 datum 

 2.50     8.4 point A 

 2.15     7.9 point B 

 1.60     9.2 point C 

 1.85     8.3 point D 

2.20  1.45    6.9 point E 

  3.45    10.4 point F 
  

Figure 142:  Field data for the levelling survey 

At each location of the level, the first reading taken is called the back sight.  The last reading 

taken before the level is moved to its next location is called the fore sight.  Any additional 

readings taken while the level is in a particular location are recorded as intermediate 

readings. 

Each row in the table refers to a particular survey point.  The height of point E was 

measured twice, with the level in different locations along the transect line.  Both fore sight 

and back sight heights are therefore recorded. 

The distances between successive survey points along the transect line are measured by 

tape and recorded in the distance column. 

The data can then be processed to determine the actual heights of the survey points.  We 

will assume that the datum point is at a height of 100m above sea level.  The back sight on 

the datum point gave a staff reading of 2.35m.  

 

Back 
sight 

Inter-
mediate 

Fore 
sight 

Rise Fall Reduced 
level 

Distance Remarks 

2.35     100.00 6.3 datum 

 2.50   0.15 99.85 8.4 point A 

 2.15  0.35  100.20 7.9 point B 

 1.60  0.55  100.75 9.2 point C 

 1.85   0.25 100.50 8.3 point D 

2.20  1.45 0.40  100.90 6.9 point E 

  3.45  1.25 99.65 10.4 point F 
 

Figure 143:  Calculation of the elevations of survey points 

 

 



Chapter 7: Shape and space    155 
 

The first survey point A gave a height reading of 2.50m.  There is a difference in elevation of 

0.15m compared to the back sight reading on the datum point.  A larger reading on the 

measuring staff represents a lower ground level, so this figure is recorded in the fall column 

of the table.  Applying a fall of 0.15m to the datum height gives a new elevation of 99.85m, 

which is recorded in the reduced level column for point A.  

Point B was surveyed next.  The staff reading was 2.15m, compared to a reading of 2.50m 

for the previous point A.  This represents a difference in elevation of 0.35m, but this time 

the ground has risen between survey points.  The result is recorded in the rise column, and 

applied to the previous elevation of point A to obtain the new reduced level value of 

100.20m. 

The calculation proceeds in the same way up to point E, where the location of the level was 

changed.  We start a new sequence of calculations at point F.  The staff reading of 3.45m at 

F is compared with the back sight reading on point E of 2.20m, showing a fall of 1.25m.  This 

difference can be subtracted from the reduced level at point E to obtain the new elevation 

at point F. 

Once all elevations have been calculated, a ground profile can be plotted using the 

horizontal distances measured between the survey points. 

 

The levelling technique described above is suitable for obtaining the ground profile along a 

single transect line: for example, across a beach and sand dune system in a coastal 

geomorphology study.  Often, however, an accurate plan or map of a land area also needs 

to be produced.  For this, the technique of triangulation is suitable.  

The area to be mapped is marked out as a series of large triangles using ranging poles, as in 

the beach survey illustrated in figure 145.  A side of one triangle is taken as a base line, and 

its compass bearing is measured.  This will allow the final map to be correctly oriented.  

Distances are measured between the survey points by tape, keeping the tape at the same 

height above the ground at each point.   The height of each survey point relative to a datum 

is found by levelling, using the method described earlier in this section. 

Where changes of height occur between survey points, the horizontal distance is calculated 

by Pythagoras' theorem: 

 

 

  

 

 

 

measured slope distance M 

difference in heights 

of survey points H 

Figure 144:  Determining horizontal distances between survey points  

 

ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑎𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐷 = √𝑀2 − 𝐻2 
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Figure 145:  Triangulation method for mapping a beach  

The angles of the triangles can now be calculated, to assist in plotting a scale plan or map of 

the survey area.  If the lengths of the three sides of a triangle are known, the angles can be 

found by applying the cosine rule.  Labelling the sides of the triangle as a, b and c, and the 

opposite angles A, B and C: 

 

 

 

 

 

then: 

𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 cos 𝐴 

𝑏2 = 𝑎2 + 𝑐2 − 2𝑎𝑐 cos 𝐵 

𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos 𝐶 

Figure 146:  Use of the cosine rule to find the angles of a triangle with known lengths of sides   

A B 

C 

a b 

c 
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It is convenient to set up a spreadsheet so that angles can be calculated directly from the 

measured slope distances and elevations of the survey points. 

 

Formulae: 

 

Figure 147:  Spreadsheet for processing triangulation data 

As an example of the use of surveying, we describe two projects carried out by members of 

an industrial archaeology course.  In the first, a survey was carried out to record details of 

an old winding drum on a gravity worked incline at the Dinorwig slate quarry, Llanberis.  The 

drum house chosen for the project, at the head of the C5 incline, is now in a derelict 

condition, but much of the machinery remains in place and can be measured and 

photographed. 

Old photographs (Carrington, 1994) show the drum house and incline, towards the end of 

the period when it was in use (figure 148).  The building contains a large wooden drum on 

which steel cable was wound.  Trucks of slates could be attached to one end of the cable, 

then lowered down the incline by releasing the brake on the drum.  At the same time, the 

other end of the cable would be wound back onto the drum, hauling empty trucks up the 

incline in the process. 
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Figure 148:  Winding drum,  

                       Dinorwig quarry 

 

 

 

 

An initial survey of the site was carried out by levelling and triangulation, so that plans and 

elevations could be drawn (figure 150).  Detail of the machinery was measured in situ, with 

additional dimensions obtained from a series of photographs taken from different positions, 

as in figure 149.  Where the designs of missing elements of the building or machinery could 

be determined, these were added to the drawings.  

 

 

 

 

 

Figure 149:   

Winding drum and  

brake mechanism 
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Figure 150:  Plan and elevation of the C5 winding drum, Dinorwig quarry 
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The second industrial archaeology project involved the mapping of tunnels and a unique 

underground waterwheel at the Ystrad Einion lead mine near Machynlleth in mid-Wales.  

This small mine opened 1877 and operated for only about 20 years (Bick, 1976), but was 

equipped with some of the most modern mining technology of the time. 

The group carried out surveying of the adit tunnel and chambers on the No. 3 level.  A plan 

was produced by a combination of triangulation and the measurement of compass bearings 

(figure 153).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 151:  Adit tunnel 

leading to the underground 

waterwheel 

 

Figure 152:  Flooded shaft 

with pump tube and remains 

of headframe for hauling up 

ore from the lower workings. 

The water wheel is in the 

chamber in the distance. 
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Figure 153:  Plan of workings on the No. 3 level, Ystrad Einion mine 

 

 

The main feature of interest in the mine is the well preserved underground water wheel, 16 

feet in diameter (figure 154).  The wheel provided motive power for the twin functions of 

pumping water from the lower levels, and raising buckets of lead ore.  Water was carried to 

the wheel through a wooden trough from a higher level of the mine. Drainage water and 

water discharged from the wheel flowed out of the mine through the adit tunnel. 

The water wheel was measured in situ using a tape and a graduated surveying staff, making 

sketches to indicate the positions of the recorded dimensions.  A number of photographs 

were taken of the machinery from different directions.  Some components had become 

disassembled or were missing, but members of the group were able to use their knowledge 

of mechanical engineering to deduce how the mechanisms operated. 

The water wheel turned in an anti-clockwise direction when viewed from the front. The 

wheel itself is constructed from cast iron segments connected to the central axle by timber 

spokes.  The segment plates hold the timber buckets of the wheel.  The whole structure is 

supported on a sturdy wooden trestle. 
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wheel  
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shaft for pumping 

and raising ore  
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The wheel carried out its pumping function by means of a rotating crank attached to the 

main axle.  The crank provided a reciprocating motion for a chain, which passed over pulleys 

to an angle bob above the mine shaft.   This converted the motion into a vertical lifting force 

to operate pump rods in the shaft.  

The water wheel has a winding drum for hauling buckets of ore up the shaft.  The drum was 

powered by reduction gearing from the water wheel.  A mechanism allowed the drive to the 

drum to be started and stopped by moving the drum shaft sideways to engage or disengage 

metal lugs on a clutch plate. A metal band brake was fitted around the edge of the winding 

drum. 

 

 

 

 

 

 

 

 

 

 

Figure 154:  Underground 

water wheel, Ystrad Einion 

mine.  

The winding drum for raising 

ore is seen on the left, and 

was powered by the large 

gear wheel.   

A crank attached to the 

water wheel was linked by  

chain to the pump rods in 

the mine shaft. 

 

Figure 155:  Arrangement of the pumping and haulage shaft 
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Figure 156:  Underground water wheel at Ystrad Einion mine 

 

1 metre 
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Engine rotation  

An important application of numeracy is in the production of computer aided designs for 

machinery, often with the addition of animation to illustrate the motion of the machine 

components.  In the final sections of this chapter, we will examine some of the 

mathematical techniques for representing objects in computer programs and for calculating 

movement.  

In two dimensions, a point can be located by its horizontal x-coordinate and its vertical y-

coordinate.  Geometrical shapes can be specified by a combination of co-ordinates, for 

example: the centre position and radius for a circle, or the corner positions of a triangle or 

rectangle.  As an example of a two dimensional graphics application, we will consider how 

an animation of a diesel engine could be produced in a computer program.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 157:  Operating cycle for a diesel engine 

 

INDUCTION COMPRESSION 

POWER EXHAUST 
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The operating cycle for a diesel engine is illustrated in figure 157.  The piston in the cylinder 

is linked to the rotating crank shaft by the connecting rod.  An input valve allows air to enter 

the cylinder at the start of the cycle.  The air is compressed, fuel is injected and the mixture 

ignites.  Expanding gasses drive the piston downwards during the power stroke, then the 

exhaust valve opens to allow the burned gases to escape.  The cycle is then repeated. 

To develop a two-dimensional animation of the engine, the fixed dimensions of the linkage 

must first be specified.  The movement of the piston will depend on the radius of rotation of 

the connecting rod bearing B, and the length of the connecting rod AB. 

 

 

 

 

 

 

 

 

 

 

 

Figure 158:  Geometry of the diesel engine motion 

 

An animation can be produced by displaying the piston and connecting rod for a fraction of 

a second at each successive angle as the crankshaft rotates.  The piston and connecting rod 

will then be redrawn in the next position.   

The rotation angle will be measured in degrees clockwise from the positive x-axis.  The 

coordinates of moving parts can then be calculated using geometry and trigonometry.  

The vertical centre line of the engine cx and the horizontal centre line of the flywheel cy 

form the origin for the coordinate system, as shown in figure 158. 

Taking radius of crank rotation as r, and the length of the connecting rod as l, then for any 

rotation angle Ɵ we can calculate xpos and ypos for the crank bearing: 

𝑥𝑝𝑜𝑠 = 𝑐𝑥 + 𝑟 cos Ɵ 

𝑦𝑝𝑜𝑠 =  𝑐𝑦 + 𝑟 sin Ɵ 

The distance of the centre of the piston above the axis of the crank shaft, shown as CA in 

figure 158, can be calculated: 

𝑝𝑖𝑠𝑡𝑜𝑛 ℎ𝑒𝑖𝑔ℎ𝑡 =  𝑦𝑝𝑜𝑠 +  √𝑙2 − 𝑥𝑝𝑜𝑠2 
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The final requirement for the simulation is to show the input and exhaust valves opening 

and closing at the correct points in the engine cycle.  The full engine cycle involves two 

rotations of the crank shaft, making a total angle of 720o.  The inlet valve is open for rotation 

angles between 0o and  90o, reopening at the end of the cycle at angles between 660o and  

720o.  The exhaust outlet valve is open at angles between 450o and  600o. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 160:  Valve positions during the diesel engine cycle 

A computer program can then be written to generate the animation, as shown in the 

flowchart below. 

Figure 159:   

Co-ordinate system for 

the diesel engine model 



Chapter 7: Shape and space    167 
 

 

 

  

Figure 161:  Flowchart for the diesel engine animation 
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Deltic railway locomotive diesel engine   
 

As a convenient alternative to writing a computer program, a computer aided design 

application with animation facilities can be used to illustrate the motion of machinery.  In 

the next section, we present a project by an engineering student which uses Solidworks CAD 

software to produce a three-dimensional model of a Deltic diesel engine. 

The Deltic engine design is unique in having groups of three double-acting cylinders 

arranged in a triangular pattern.   

 

 

 

 

 

 

 

 

 

 

During the power stroke, the two pistons within a cylinder are driven apart, causing rotation 

of the two crank shafts to which they are connected.  This in turn causes compression, 

induction or exhaust strokes in the other two cylinders.  A power stroke occurs in each of 

the three cylinders in sequence. 

Figure 162:   

Representation of the diesel engine 

during the exhaust stroke, with the 

outlet valve open 

Figure 163:   

Triangular arrangement of the 

double-acting cylinders of the 

Deltic diesel engine 
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The following is an extract from the student's account of his design work: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first thing I designed was the 

cylinder. Each cylinder bank is split into 

two separate cylinder blocks mated with 

a gasket in between them. This is mainly 

a maintenance friendly design to make it 

easier and cheaper to replace cylinders.   

I decided a diameter of 90mm would be 

sufficient for the model as it would be 

large enough to work theoretically if the 

engine was built. There is a water jacket 

around the cylinders for cooling 

purposes.  
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Once I had the crankshafts designed I placed them into the assembly using centre mounts to 

give the spacing needed for clearances of the connecting rods. When the crankshafts were 

mounted, I placed the piston at the desired position. I then measured from the piston to the 

crank to get the length for the connecting rod.  

 

When the length was determined, I started work on 

designing the connecting rod. I made two circles at 

the correct distance and the right sizes for the crank 

and gudgeon pin (holds the piston to the connecting 

rod). I then drew the rest of the connecting rod but I 

cut the crank side in half in order to place it on the 

crankshaft. The piston side doesn’t need to be split as 

the gudgeon pin is pressed through the piston and 

connecting rod.  

 

 

Now that the main moving components were designed, 

I could assemble it into a functional model in the CAD 

software. I first placed all the moving components into 

the model and mated them to the surfaces that they 

needed to be in contact with. 

Once all the components were in place I put the engine 

in time and prevented any movement until I’d made a 

gearing system to transfer the power to a single output. 

I made two support plates to hold a PTO shaft in the 

centre and support the crank shafts on both sides. 
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Figure 164:  The completed engine animation 

This project provides a good example of the integration of numeracy into vocational course 

activities.  A range of skills have been demonstrated within the wider definition of 

numeracy: 

 Problem solving, in deducing the correct sequence of motion of the engine 

components 

 Mathematical techniques, in calculating appropriate dimensions and movement 

paths for components 

 Application of techno-mathematical literacy in the use of computer aided design 

software. 

 Use of relevant vocational knowledge.  The student was able to apply his 

understanding of the operation of a simple diesel engine to develop the designs for 

a more complex system.  

 Communication.  Using effective animation techniques to help explain the design to 

others. 
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Isometric projection 

The technique described earlier for producing computer animations in two dimensions can 

be extended in a straightforward way to three dimensions by using a coordinate system 

with three perpendicular axes: 

 

 

 

 

 

 

 

 

Figure 165:  Representing a point in three dimensions 

Each point is represented by a set of three coordinates, as in this example of a point at the 

position x=2, y=3, z=1. 

Points can be combined to produce faces by specifying the series of points making up the 

perimeter.   

 

 

 

 

 

 

 

 

Figure 166:  Representing a face in three dimensions 

Once a series of faces have been defined for an object, these then have to be represented 

on a computer screen.   

We are familiar with the perspective views of objects seen in photographs, where parallel 

lines such as the edges of a road or building appear to converge as they extend into the 

distance.  Perspective can be represented in computer generated images.  However, this 

adds extra complexity to graphics calculations.  Many computer aided design systems 
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instead use isometric projection, in which parallel edges of objects remain parallel with 

distance.  This generally provides a satisfactory representation of machines which would be 

observed from a close view point. 

Isometric projections can be drawn by hand using special graph paper.  The three 

coordinate directions are represented by sets of parallel lines:  the x- and z- directions are 

inclined at 30o to the horizontal, whilst the y-direction is vertical.  A point is selected as the 

origin of the coordinate system, then the grid used to locate positions of points and faces. 

 

 

 

 

 

 

 

 

 

 

Figure 167:  Representation of a face in isometric projection 

Complex shapes can be produced in isometric projection, as in this example which includes 

an inclined face 

 

 

 

 

 

 

 

 

 

 

 

 

jmcintyre.wikispaces.com/TDJ3M_Views_and_S

ketching 

y 

x 

z 

0,0,0 

2 

3 

Figure 168:  Example of a machine component in isometric projection 
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A problem which arises in computer applications is that faces must be added in the correct 

sequence if they are to overlap correctly in the final image.  This is achieved by a depth sort 

algorithm.  The faces furthest from the viewer need to be drawn first, then the nearer faces 

plotted on top to build up the picture.  Taking an example of a cube: 

 

 

 

 

 

 

 

 

 

 

 

Figure 169:  Depth sorting of the faces of a cube 

The order in which faces should be plotted depends on the z-coordinates.  In this example, 

face B should be plotted first as it is furthest from the viewer and contains the maximum z-

coordinate of any corner of the cube. Faces C and A have lower z-coordinate values for the 

corners, so will be plotted on top.  Face B will actually be hidden from view in the finished 

picture of the cube. 

 

Geometric transformations 

In an animation of a machine, we may need to move or rotate the image.  Simple 

movement, known as translation, can be achieved by adjusting the coordinate values.  For 

example, suppose that we wish to translate a shape in the x-y plane so that its centre moves 

from the point (3, 2) to the point 10, 6)  
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Figure 170:   

Translation of a shape 

in the x-y plane 
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Any general point (x,y) will be moved to the new point (X,Y) according to the equations: 

𝑋 = 𝑥 + 7 

𝑌 = 𝑦 + 4 

Rotation can be handled in a similar way.  Suppose that we wish to rotate a shape around 

the origin of the x-y plane by an angle :  

 

 

 

 

 

 

 

As a result of the rotation, a typical point (x,y) on the shape moves to the position (X,Y). 

Using trigonometry, it is possible to calculate the new coordinates X and Y: 

𝑋 = 𝑥 𝑐𝑜𝑠 𝜃 − 𝑦 𝑠𝑖𝑛 𝜃 

𝑌 = 𝑥 𝑠𝑖𝑛 𝜃 + 𝑦 cos 𝜃 

These equations are derived by means of the trigonometric identities for compound angles: 

sin(𝐴 + 𝐵) = sin 𝐴 cos 𝐵 + cos 𝐴 sin 𝐵 

cos(𝐴 + 𝐵) = cos 𝐴 cos 𝐵 − sin 𝐴 sin 𝐵 

which may be found in A-level mathematics textbooks.   

Suppose that a rotation by an angle Ɵ transforms a general point from (x,y) to (X,Y): 
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(x, y) 

x 

y 
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Figure 171:  Rotation of a point in the x-y plane 
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The distance R of the point from the origin will remain the same during the rotation.  

Therefore, if the initial angle to the point is α 

𝑥 = 𝑟 cos 𝛼 

𝑦 = 𝑟 sin 𝛼 

After rotation, the coordinates of the point have become: 

𝑋 = 𝑟 cos(𝛼 + 𝜃) 

𝑌 = 𝑟 sin(𝛼 + 𝜃) 

Using the compound angle identities: 

𝑋 = r cos 𝛼 . cos 𝜃 − 𝑟 sin 𝛼 . sin 𝜃 

𝑌 = 𝑟 sin 𝛼 . cos 𝜃 + 𝑟 cos 𝛼 . sin 𝜃 

Substituting    𝑥 = 𝑟 cos 𝛼,    𝑦 = 𝑟 sin 𝛼  gives: 

𝑋 = 𝑥 𝑐𝑜𝑠 𝜃 − 𝑦 𝑠𝑖𝑛 𝜃 

𝑌 = 𝑥 𝑠𝑖𝑛 𝜃 + 𝑦 cos 𝜃 

as shown on the previous page.  These equations can also be written in matrix form: 

[
𝑋
𝑌

] = [
cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃
] [

𝑥
𝑦] 

The equations and the matrices are just different ways of saying the same thing. From the 

rules for multiplying matrices, it is always the case that: 

[
 𝐴 𝐵
 𝐶 𝐷

] [
𝑥
𝑦] =

𝑥. 𝐴 + 𝑦. 𝐵
𝑥. 𝐶 + 𝑦. 𝐷

 

 

We now have the necessary equations to rotate objects around the origin.  However, the 

situation is a little more complex if it is necessary to rotate an object about a point which is 

not at the origin.   

To achieve a rotation by an angle Ɵ about a point (A,B), the strategy needed is: 

 Find the coordinates of all points on the boundary of the shape relative to the 

required rotation centre (A,B). 

 Translate the points to the origin (0,0) by subtracting x-coordinate A and y-

coordinate B. 

 Carry out a rotation of each point by the required angle Ɵ about the origin 

 Translate all the points back to the rotation centre (A,B) by adding x-coordinate A 

and y-coordinate B. 

This sequence is illustrated in figure 172. 
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Figure 172:  Rotation of an object about a point which is not at the origin  

(X,Y) 

(0, 0) 

(x,y) 

(A, B) 

(X', Y') 

Step 1 

Translate the shape from the rotation 

centre (A,B) to the origin using: 

X = x – A 

Y = y – B 

Step 2 

Rotate the shape at the origin using: 

[𝑋′
𝑌′

] = [
cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃
] [

𝑋
𝑌

] 

 

Step 3 

Translate the shape back to the rotation 

centre position using: 

x' = X' + A 

y'=  Y' +  B 

(x', y') 

(A, B) 
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The matrix containing the trigonometric functions:  

[
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] 

is known as the two dimensional rotation matrix. We can make use of this to develop more 

complex formulae for rotations in three dimensions.   

Consider a cube.  If we view the cube in the direction of the z-axis, we only see face 1:   

 

 

 

 

 

 

 

 

 

Figure 173:  Rotation of a cube around two axes 

 

To view the other faces, it will be necessary to apply a rotation to the cube.  This is similar to 

the two dimensional rotation described previously.  However, moving the cube into every 

possible position will require a combined rotation around two axes - we can call the two 

rotation angles Ɵ {theta} and φ {phi}. 

Consider first the rotation Ɵ.   This takes place in the x,z plane: 

 

 

 

 

 

 

 

 

Figure 174:  Rotation by an angle Ɵ in the x,z plane  

 

view direction 

rotation axis Ɵ 

rotation axis φ 

rotation axis Ɵ 
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Supposing that some point with the coordinates (x, z) is rotated by an angle Ɵ so that it ends 

up in position (X, Z).  The new coordinates of the point are given by the formulae: 

𝑋 = 𝑥 𝑐𝑜𝑠 𝜃 − 𝑧 𝑠𝑖𝑛 𝜃 

𝑍 = 𝑥 𝑠𝑖𝑛 𝜃 + 𝑧 cos 𝜃 

These are the same formulae as for two-dimensional rotation - we have just used z instead of 

y.  The two equations can also be written in matrix form:  

[
𝑋
𝑍

] = [
cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃
] [

𝑥
𝑧

] 

However, because we are working in three-dimensions, we mustn't ignore the y coordinate.  

This will be unaffected if the point rotates in the x,z plane, so the new coordinate Y will be 

the same as the old coordinate y.  The full set of equations is therefore:  

𝑋 = 𝑥 𝑐𝑜𝑠 𝜃 − 𝑧 𝑠𝑖𝑛 𝜃 

𝑌 = 𝑦                              

𝑍 = 𝑥 𝑠𝑖𝑛 𝜃 + 𝑧 cos 𝜃 

These three equations can also be written in matrix form:  

[
𝑋
𝑌
𝑍

] = [
cos 𝜃 0 − sin 𝜃

0 1 0
sin 𝜃 0 cos 𝜃

] [
𝑥
𝑦
𝑧

] 

The other rotation  takes place in the y, z plane:  

 

 

 

 

 

 

 

Figure 175:  Rotation by an angle φ in the y,z plane 

 

For rotations in the y, z plane, the x coordinate will be unaffected. The set of equations for a 

rotation are therefore:  

𝑋 = 𝑥                              

𝑌 = 𝑦 𝑐𝑜𝑠 𝜃 − 𝑧 𝑠𝑖𝑛 𝜃 

𝑍 = 𝑦 𝑠𝑖𝑛 𝜃 + 𝑧 cos 𝜃 

rotation axis φ 
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These three equations can be written in matrix form:  

[
𝑋
𝑌
𝑍

] = [
1 0 0
0 cos ∅ − sin ∅
0 sin ∅ cos ∅

] [
𝑥
𝑦
𝑧

] 

 

We now arrive at the general case where the cube is rotated by both an angle Ɵ and an angle 

.  Together these allow us to turn the cube into any position we wish. 

We can derive the three-dimensional rotation matrix by multiplying together the matrices for 

rotation in the x, z and y, z planes:   

[
cos 𝜃 0 − sin 𝜃

0 1 0
sin 𝜃 0 cos 𝜃

] [
1 0 0
0 cos ∅ − sin ∅
0 sin ∅ cos ∅

] = [
cos 𝜃 − sin 𝜃 . sin ∅ − sin 𝜃 . cos ∅

0 cos ∅ − sin ∅
sin 𝜃 cos 𝜃. sin ∅ cos 𝜃 . cos ∅

] 

 

This leads to the equations: 

𝑋 = 𝑥 . cos 𝜃 − 𝑦 . sin 𝜃 . sin ∅ − 𝑧 . sin 𝜃 . cos ∅                              

𝑌 = 𝑦 cos ∅  − 𝑧 sin ∅ 

𝑍 = 𝑥 . 𝑠𝑖𝑛 𝜃 + 𝑦. cos 𝜃  . sin ∅ + 𝑧 . cos 𝜃 . cos ∅ 
 

To see how this result can be used in computer graphics, we will look at a student project to 

display an animation of an excavator.  The student began by creating a simple image of the 

vehicle by entering the corner coordinates of the series of surface patches which make up 

the solid shape: 

 

 

Figure 176:  Basic solid model for the excavator 
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The rear excavator arm consists of three components which move independently.  The 

boom may rotate horizontally to either side of the machine, and may elevate in a vertical 

plane.  The dipper arm, attached to the top of the boom, may also elevate in a vertical plane. 

The bucket attached to the end of the dipper arm may rotate upwards and downwards.  

These motions are combined to produce a digging action. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 177:  Independent motions of the rear excavator arm 

 

In the computer animation, the user will be able to control the separate rotations by a set of 

virtual levers, in a similar way to real machine.  The motions will then be shown in the 

graphics image of the excavator. 

We will take the graphics origin as the intersection of the vertical and horizontal rotation 

axes for the boom.  We will designate the horizontal rotation angle as Ɵ and the vertical 

rotation angle as . 
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Figure 178:  Angles of rotation of the excavator boom 

If any point on the boom with current coordinates (x,y,z) is rotated by a horizontal angle Ɵ 

and a vertical angle φ, then the new coordinates of the point (X,Y,Z) will be given by: 

𝑋 = 𝑥 . cos 𝜃 − 𝑦 . sin 𝜃 . sin ∅ − 𝑧 . sin 𝜃 . cos ∅                              

𝑌 = 𝑦 cos ∅  − 𝑧 sin ∅ 

𝑍 = 𝑥 . 𝑠𝑖𝑛 𝜃 + 𝑦. cos 𝜃  . sin ∅ + 𝑧 . cos 𝜃 . cos ∅ 

We can now consider the motion of the dipper arm, which is pivoted at the end of the 

boom.  Another axis of rotation is introduced, which we can call α  

  

 

(x,y,z) 

rotation axis φ 

rotation axis Ɵ 

 

(x,y,z) 

rotation axis φ 

  rotation axis Ɵ 

rotation axis α 

Figure 179:  Angles of rotation affecting the 

excavator dipper arm 
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Suppose that a point (x,y,z) on the dipper arm moves through an angle α.  The current 

position of the boom affects both the position of the rotation axis of the dipper arm, and the 

direction in which rotation of the dipper arm will take place.  A strategy for rotating the 

dipper arm is: 

 Translate each point on the dipper arm back to the origin.  This can be done by 

subtracting the current x, y and z coordinates of the mid point of the rotation axis α 

 Remove the effects of the current rotation of the boom.  This can be done by 

applying a rotation of –Ɵ to each point on the dipper arm. 

 Apply the vertical rotation α to the points of the dipper arm using: 

𝑋 = 𝑥                              

𝑌 = 𝑦 𝑐𝑜𝑠 𝛂 − 𝑧 𝑠𝑖𝑛 𝛂 

𝑍 = 𝑦 𝑠𝑖𝑛 𝛂 + 𝑧 cos 𝛂 

 Re-apply the current rotation of the boom Ɵ to each point on the dipper arm. 

 Translate each point on the dipper arm back to the current x, y and z position of the 

mid point of the rotation axis α 

 

Motion of the bucket introduces yet another rotation axis, which we will call β   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 180:  Angles of rotation affecting the excavator bucket 
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The strategy needed to apply a rotation of angle β to the bucket involves a series of stages: 
 

 Translate each point on the bucket back to the origin.  This is done by subtracting the 

current x, y and z coordinates of the mid point of the rotation axis β 

 Remove the effects of the current rotation of the boom.  This can be done by 

applying a rotation of –Ɵ to each point on the bucket. 

 Apply the vertical rotation β to the points of the bucket using: 

          𝑋 = 𝑥                              

𝑌 = 𝑦 𝑐𝑜𝑠 𝛃 − 𝑧 𝑠𝑖𝑛 𝛃  

𝑍 = 𝑦 𝑠𝑖𝑛 𝛃 + 𝑧 cos 𝛃  

 Re-apply the current rotation of the boom Ɵ to each point on the bucket. 

 Translate each point on the bucket back to the current x, y and z position of the mid 

point of the rotation axis β. 

 

Summary 

In this chapter we have looked at a range of mathematical techniques, from surveying land 

surfaces to representing components of buildings and machinery.  Numeracy tasks involving 

shape and space can be relevant to a wide range of courses, and often provide interesting 

and motivating challenges for students.   

Shape and space projects fit well into the scheme of broader numeracy training, 

incorporating: measurement, use of computer technology, problem solving and 

communication, and a requirement for a detailed subject knowledge of the vocational area.   

Mathematical techniques required in shape and space tasks can extend well beyond the 

simple calculation of distances, areas and volumes involving regular shapes.  Problems may 

require the application of some advanced geometrical and trigonometrical techniques.  We 

will see in a later chapter that calculus may also play a part in shape and space calculations. 

 

 

 

 

 

 


